Saint Eithne's Primary School

Numeracy Calculations Handbook Guidance for Staff and Parents

Compiled by Mrs P. Miller Numeracy Coordinator

October 2020

Contents Page

Page 3	Overview of the Numeracy Calculations Handbook
Page 4	Section A: Breakdown of Addition and Subtraction Ranges
	Section B: Breakdown of Multiplication Tables
Pages 5 – 9	Primary One: The Four Operations
Pages 10 – 15	Primary Two: The Four Operations
Pages 16 – 21	Primary Three: The Four Operations
Pages 22 – 28	Primary Four: The Four Operations
Pages 29 – 33	Primary Five: The Four Operations
Pages 34 – 39	Primary Six/Seven: The Four Operations

Overview and Purpose of Numeracy Calculations Handbook

This handbook is to be used to ensure the consistent approach to the teaching of the four operations in numeracy. It will outline clearly the teaching strategies and methods used within each Key Stage and year group.

It can be used to help inform numeracy planning and provides an insight into the teaching that has occurred in prior year groups.

This handbook can also be used by parents in the support of teaching the four operations and as an aid to providing help and support to their children with their homework.

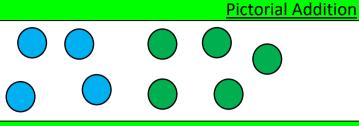
Section A

Breakdown of Addition and Subtraction

This table outlines the level of Place Value/Addition and Subtraction that is taught within each year group.

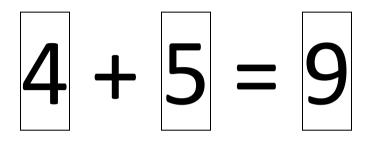
Year Group	<u>Level/Content</u>
Primary 1	Working to 10
	(initially)
Primary 2	Working to 20
	(initially)
Primary 3	Working to 99
	(extend to 999)
Primary 4	Working to 999
Primary 5	Working to 9, 999
Primary 6	Working to 99, 999
	(initially)
Primary 7	Working to 99, 999
	(initially)

Section B


Multiplication Tables

This table outlines the level of multiplication that is taught within each year group.

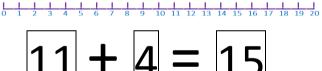
<u>Year Group</u>	<u>Level/Content</u>
Primary 1	Counting in 2s
Primary 2	Counting in 2s, 5s and 10s
Primary 3	2, 5 and 10 multiplication tables
Primary 4	2, 3, 4, 5 and 10 multiplication tables
Primary 5	2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 multiplication tables
Primary 6	2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 multiplication tables
Primary 7	2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 multiplication tables


Addition

Approaches and strategies used for teaching addition

Initially addition
a) within 5 b) within 10
Practical and oral work
adding within 5/10

Number Sentence


Initially children complete each number sentence by placing digit cards in each box before progressing to writing the numbers themselves.

Use of a Number Line

Counting On Number Lines

In Term 3 the children begin to add within 20 using a number line.

Number sentences continue to be written horizontally.

Use of 100 Square

Children in Primary 1 are introduced to the hundred square and practise counting to 100. Practise counting in 2s, 5s and 10s.

Language of Addition used in Primary One

Add

Plus

Altogether

Makes

Equal

One more

Two more

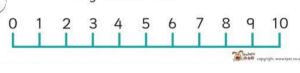
Subtraction

Approaches and strategies used for teaching subtraction

Practical Subtraction

Practical and oral work subtracting within 5 initially.

Move on to subtracting within 10 in Term 3


Number Sentence

Initially children complete the number sentence by placing digit cards in each box before progressing to writing the numbers themselves. Practical materials also used by children at this stage.

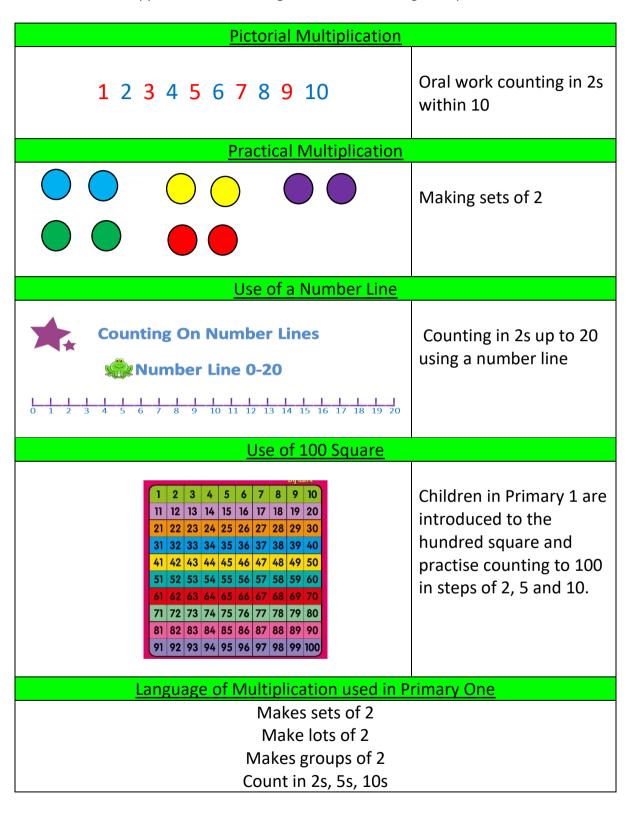
Use of a Number Line

My number line

The children practise counting backwards within 10 using a number line.

Number sentences continue to be written horizontally.

Use of 100 Square

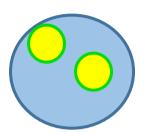

Children in Primary 1 have been introduced to the hundred square and practise counting backwards from 10.

Language of Subtraction used in Primary One

Take away Subtract Minus Leaves How many left? One less Two less

Multiplication

Approaches and strategies used for teaching multiplication.



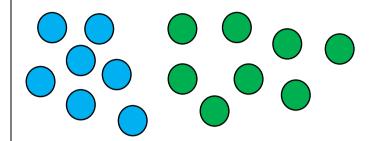
Division

Approaches and strategies used for teaching division.

Practical Division

Making sets of 2

Sharing between 2


Language of Division used in Primary One

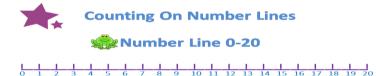
Share between 2
Sets of 2
Groups of 2
Equal

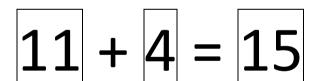
Addition

Approaches and strategies used for teaching addition

Pictorial Addition

Term 1


Combining sets to 10/15


Term 2

Extend addition – within 20

Number Sentence

Use of a Number Line

Children are taught to move to the right when adding using a number line.

Practise counting in 2s – odd/even numbers

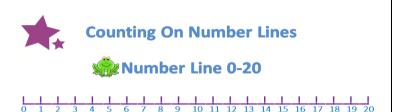
The Commutative Law

Children are introduced to the commutative property of addition (within 10)- for example children learn that 6 + 3 is the same as 3 + 6

Use of 100 Square

-								əq u	are
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Use of 100 square to practise counting in 2s to 20 5s to 100 10s to 100

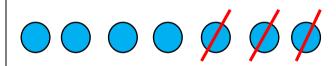

Language of Addition used in Primary Two

Add
Plus
Altogether
Makes
Equal
More than
Total
How many?

Subtraction

Approaches and strategies used for teaching subtraction

Use of a Number Line



Children practise counting backwards from different starting points. Use number line to link counting back to subtraction.

Move to the left when counting backwards.

Practical Subtraction

Using a variety of practical equipment to practise subtraction within 10 initially.

In Term 3, children subtract within 20.

Number Sentence

Children will have had experience of using the subtraction symbol in practical activities.

In Term 2b, children will carry out shopping activities and games requiring giving out change from 15p/20p.

Use of 100 Square

			,					oqu	are
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Children practise counting backwards in 1s, 2s, 5s and 10s from 20/50/100
- Practise counting backwards in 1s from different starting points within 100.

Language of Subtraction used in Primary Two

Minus

Subtracting

Take away

Less than

Fewer

Difference

Difference between

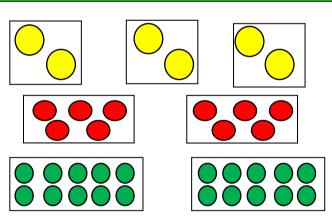
Multiplication

Approaches and strategies used for teaching multiplication.

Pictorial Multiplication

2 4 6 8 10 12 14 16 18 20

5 10 15 20 25 30 35 40 45 50


10 20 30 40 50 60 70 80 90 100

Counting in sets of 2,5 and 10

Use of 100 Square

Use of 100 square to practise counting in 2s to 20 5s to 100 10s to 100

Practical Multiplication

Making sets of 2, 5 and 10

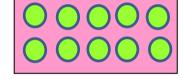
Language of Multiplication used in Primary Two

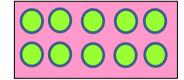
Makes sets of 2 Make lots of 2 Makes groups of 2 Count in 2s, 5s, 10s

Division

Approaches and strategies used for teaching division.

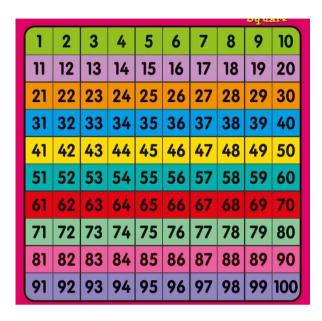
Practical Division





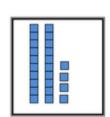
Making sets of 2/5/10

Sharing between 2/5/10


Language of Division used in Primary Two

Share between 2, 5, 10
Sets of 2, 5, 10
Equal sets
Equal groups

Addition


Approaches and strategies used for teaching addition

Use of 100 Square

- Counting in 2s (odd/even)
- Counting in 10s from any starting point eg 13, 23, 33
- Adding on the 100 square within a decade
- Adding on the 100 square bridging a ten.
 Introducing the concept of adding by sweeping from right to left from 10 across to 11, 20 across to 21, 30 across to 31 etc

Addition Patterns

$$1 + 3 = 4$$

Children explore extended addition patterns

- a) practically using Tensand Units apparatus
- b) written horizontally

Horizontal/Vertical Addition of 3 Numbers

Children add together 3 single digit numbers.
They are encouraged to look for values that can be paired eg 2 numbers that add to 10, doubles.

Vertical Addition without Regrouping

Vertical addition without regrouping is introduced in Term 1B.We reinforce with the children that when we are adding we always begin by adding the UNITS and then the TENS.
Children move on to adding three 2-digit numbers without regrouping.

Vertical Addition of HTU without Regrouping

HTU 314 +<u>265</u> 579 We reinforce with the children that when we are adding we always begin by adding the UNITS, then the TENS and then the HUNDREDS. (up to 999)

Vertical Addition with Regrouping

T U 4 8 + 3₁5 8 3 Remind the children that when we are adding we always begin by adding the UNITS and then the TENS. When we regroup, it is carried to the <u>right</u> of the bottom TENS digit. The sum is laid out as shown on the left.

Language of Addition Used in Primary Three

Add
Plus
Altogether
Makes
Equal
More than
Total
How many?
Increase
Greater than

Subtraction

Approaches and strategies used for teaching subtraction.

Use of 100 Square

	_	_	_	_				oqu	100
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Counting back in 1s, 2s, 5s, 10s
- Counting back in 10s from any starting point eg 63, 53, 43, 33
- Subtracting on the 100 square bridging a ten.
- Introducing the concept of subtracting by sweeping from left up to right from;
- 21 across and up to 20
- 31 across and up to 30
- 41 across and up to 40.
- Subtracting 10 from any given number.
- Subtract 11, 21
- Subtract 9, 19

Subtraction Patterns

$$6 - 3 = 3$$

$$16 - 3 = 13$$

$$26 - 3 = 23$$
 etc

Children explore subtraction patterns

Horizontal Subtraction

$$57 - 6 = 51$$

Vertical Subtraction

£7.34 -£2.12 -£5.22 Vertical subtraction without exchange.
We reinforce with the children that when we are subtracting we always begin by subtracting the UNITS and then the TENS. Extend to subtraction of HTU – without exchanging. Include money amounts in subtraction.

Language of Subtraction used in Primary Three

Minus
Subtracting
Take away
Less than
Fewer
Decrease
Difference
Difference

Multiplication

Approaches and strategies used for teaching multiplication.

Use of 100 Square

Counting in 2s, 3s, 4s, 5s and 10s

From sets to Multiplication

$$3 = 6$$

Χ

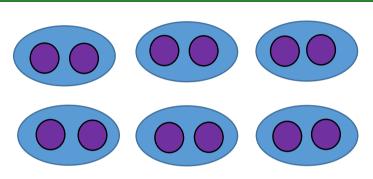
6

 Practise making and drawing sets
 Eg 2 sets of 3

2 sets of 9 etc

- Adding the sets we say
 2 sets of 3 is the same
 as 3+3=6
 So 2 sets of 3 is 6
- Introduce the multiplication sign
 2 x 3 = 6
- Repeat this activity for2 sets of 1, 2, 3, 4,12

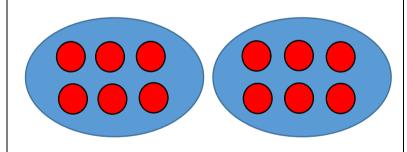
Language of Multiplication used in Primary Three


Makes sets of 2
Make lots of 2
Makes groups of 2
Count in 2s, 3s, 4s, 5s, 10s
Multiply
Multiplication

Division

Approaches and strategies used for teaching division.

The concept of division is taught through the practical processes of grouping and sharing.


Grouping

12 divided by 2 = 6

Make groups of 2. How many groups are there? Answer = 6

Sharing

12 divided by 2 = 6

Make 2 groups. How many in each group? Answer = 6

Language of Division used in Primary Three

Share between 2, 5, 10
Sets of 2, 5, 10
Equal sets
Equal groups

Addition

Approaches and strategies used for teaching addition

Use of the 100 Square

- Counting forward 10/ multiples of 10. Starting at any given number.
- Use expanded notation to add two 2-digit numbers
 23 + 45=20 + 40 + 3 + 5

Vertical addition of TU without Regrouping

Revision of Vertical addition without regrouping (within 100) We reinforce with the children that when we are adding we always begin by adding the UNITS and then the TENS.

Vertical Addition Of TU with Regrouping

ΤU
5 9
+ 2 ₁ 3
8 2

Reminder - always begin by adding the UNITS and then the TENS. (within 100)
When we regroup and carry, it is carried to the right of the bottom TENS digit.

Vertical Addition Of HTU without Regrouping

HTU 354 +431 785 We reinforce with the children that when we are adding we always begin by adding the UNITS, then the TENS and then the HUNDREDS. (up to 999)

Vertical Addition Of HTU with Regrouping

a) One regrouping

HTU

3 5 4

+4 3₁8

792

HTU

481

+2₁9 3

774

b) Two regroupings

HTU

375

+4₁3₁9

814

Remind the children that when we are adding we always begin by adding the UNITS and then the TENS and then the HUNDREDS. When we regroup, it is carried to the <u>right</u> of the bottom TENS or

HUNDREDS digit.
Example sums are laid out

as shown on the left.

Addition to 999.

Language of Addition Used in Primary Four

Add

Plus

Altogether

Makes

Equal

More than

Total

How many?

Increase

Greater than

Subtraction

Approaches and strategies used for teaching subtraction

Use of the 100 square

- Subtract 10 from any given number.
- Subtract a multiple of 10 from any given number
- Subtract a 2-digit number from a 2-digit number 46 – 24
 First subtract 2 tens
 Then count back 4 units

Vertical subtraction of TU without Exchanging

	Τ	U
	5	4
_	2	3
	3	1

Revision of Vertical subtraction without regrouping (within 100) We reinforce with the children that when we are subtracting we always begin by subtracting the UNITS and then the TENS.

Vertical Subtraction Of TU with Exchanging (within 100)

Reminder – always begin by subtracting the UNITS and then the TENS.

The sum is set out as shown on the left. The "exchanged" value is always written to the top left of the digit on the top line of the sum.

Vertical Subtraction Of HTU without Exchanging

	Н	T	U	
	7	8	4	
-	2	6	1	
	5	2	3	

We reinforce with the children that when we are subtracting we always begin by subtracting the UNITS, then the TENS and then the HUNDREDS. (up to 999)

Vertical Subtraction Of HTU with Exchanging

a) One exchange

b) Two exchanges

2 1 6

H T U 4 7 8 10 - 2 4 3

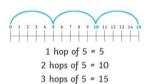
2 3 7

Remind the children that when we are subtracting we always begin by subtracting the UNITS and then the TENS and then the HUNDREDS.

Sums are set out as shown on the left. When we exchange, the new value is always written to the top left of the digit on the top line of the sum.

Subtraction within 999.

Language of Subtraction used in Primary Four


Minus
Subtracting
Take away
Less than
Fewer
Decrease
Difference
Difference

Multiplication

Approaches and strategies used for teaching multiplication.

Making sets/Using Arrays/Repeated Addition of 2/3/4/5/10

 $3 \times 5 = 15$

We make sets of numbers and use the process of repeated addition and arrays to reinforce multiplication.

Multiplication Grids for 2/3/4/5/10

We use these types of multiplication grids to reinforce the multiplication facts.

Language of Multiplication used in Primary Four

Sets

Lots

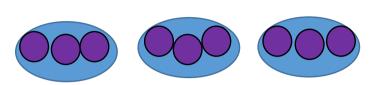
Groups

Array

Multiply

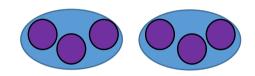
Multiplication

Repeated addition

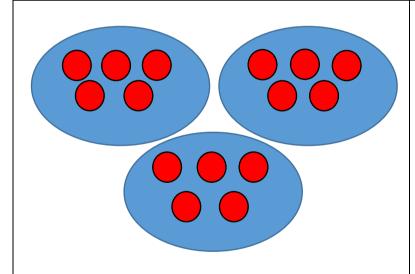

Product

Division

Approaches and strategies used for teaching division.

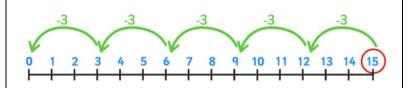

The concept of division is revisited through the practical processes of grouping and sharing.

Grouping


In Primary 4, the division symbol (÷) is introduced

15 divided by 3 = 515 ÷ 3 = 5

Make groups of 3. How many groups are there? Answer = 5


Sharing

15 divided by 3 = 515 ÷ 3 = 5

Make 3 groups. How many in each group? Answer = 5

Repeated Subtraction

15 ÷ 3 = 5

Count back in steps of 3 to find out how many times 3 can be subtracted from 15.
Answer = 5

The Bus Stop Method

The bus top method for formal division is introduced in Primary 4.

Remainders are also introduced in Primary 4

Language of Division used in Primary Four

Division

Divide

Share

Equal sets

Equal sharing

Repeated subtraction

Remainder

Addition

Approaches and strategies used for teaching addition

Vertical addition of THTU without/ with Regrouping

One regrouping

THHTU

3 5 9 1

 $+23_{1}24$

5 9 1 5

Two regroupings

TH H T U

3 5 9 8

 $+23_{1}2_{1}4$

5 9 2 2

TH HT U

5724

 $+2_{1}563$

8287

TH HT U

5724

 $+ 2_{1}5 6_{1}9$

8293

We reinforce with the children that when we are adding we always begin by

adding the UNITS, then the TENS, then the HUNDREDS

and then the THOUSANDS.

When we carry, it is

carried to the <u>right</u> of the

number on the bottom line

of the sum.

Example sums shown on

the left.

Addition to 9999

In Term 3, addition is extended to 99,999 with up to 4 regroupings.

Three regroupings

TH H TU

3 8 9 7

 $+2_{1}3_{1}7_{1}4$

6 2 7 1

Language of Addition Used in Primary Five

Add

Plus

Altogether

Makes

Equal

More than

Total

How many?

Increase

Greater than

Subtraction

Approaches and strategies used for teaching subtraction

Vertical Subtraction of THTU with Exchanging

Two exchanges

Th H T U

2/3¹5 3/4 10

- 1 8 2 7

1 7 1 3

Four exchanges

TTH TH H T U

4g145/13/412/3 10

- 2 8 7 4 6

2 6 6 8 4

Remind the children that when we are subtracting we always begin by subtracting the UNITS, then the TENS, then the HUNDREDS and then the THOUSANDS

Example sums are set out as shown on the left.

When we exchange, the new value is always written to the top left of the digit on the top line of the sum.

Subtraction within 9999,

initially. Extend beyond

9999.

Language of Subtraction used in Primary Five

Minus

Subtracting

Take away

Less than

Fewer

Decrease

Difference

Difference between

Multiplication

Approaches and strategies used for teaching multiplication.

Multiplication Grids

We use these types of multiplication grids to reinforce the process of multiplication and recall of multiplication facts.

Grid Method

$$24 \times 7 = 168$$

×	20	4
7	140	28

- 1. Draw a grid and write the partitioned numbers across the top. (20, 4)
- Multiply each of the partitioned numbers.
 (20 x 7, 4 x 7)
- 3. Add the products 140 + 28 = 168

Column Method

1 6 8

- 1. Write the numbers above each other.
- 2. Multiply $4 \times 7 = 28$
- 3. Write down 8 and carry2.
- 4. Multiply $2 \times 7 = 14$
- 5. Add carried 2 14 + 2 = 16

Language of Multiplication used in Primary Five

Multiply
Multiplication
Repeated addition
Product
Opposite of Division
Inverse of Division

Division

Approaches and strategies used for teaching division.

Short Division

2 digit division – no remainder

$$78 \div 6 = 1 \quad 3$$

$$6 \quad 7 \quad 8$$

$$1 \times 6 = 6$$
1 remainder left over $3 \times 6 = 18$

3 digit division – no remainder

186 ÷ 6 = 0 3 1
6 1 18 6
no groups of 6
can be made
$$3 \times 6 = 18$$

3 digit division – with remainder

Division is taught using the bus stop method, with and without remainders.

Language of Division used in Primary Five

Division

Divide

Share

Split

Equal sets

Equal sharing

Repeated subtraction

Remainder

Divisible by

Opposite of multiplication

Inverse of multiplication

Primary 6 / Primary 7

Addition

Approaches and strategies used for teaching addition.

Vertical addition with Regrouping

TTH TH H T U
5 7 8 9 7
+ 2₁ 3₁ 7₁ 4₁ 6
8 1 6 4 3

Initially revise addition to 9999 Extend addition beyond 9999 with regrouping Primary 7 – addition to any

Primary 7 – addition to any value

We reinforce with the children that when we are adding we always begin by adding the UNITS, then the TENS, then the HUNDREDS and then the THOUSANDS.

When we carry, it is carried to the right of the number on the bottom line of the sum.

An example sum is laid out as shown on the left.

Addition of Decimal Numbers

23.361 + 9.08 + 59.77 + 1.3

23.361

9.080

59.770

 $+ _{2} 1_{1}.3_{2}00$

9 3.5 1 1

In Primary 6 and 7 children add several decimal numbers of increasing complexity. It is essential that decimal points are aligned vertically when adding.

Empty decimal places can be filled with a zero to show the value in each column.

Language of Addition Used in Primary Six and Seven

Add

Plus

Altogether

Makes

Equal

More than

Total

How many?

Increase

Greater than

Primary 6 / Primary 7

Subtraction

Approaches and strategies used for teaching subtraction.

Vertical Subtraction with Exchanging

TTHTHH T U

4511213410115

- 2 3 7 4 6

2 8 6 6 9

Initially revise subtraction to 9999 before extending subtraction beyond 9999 with exchanging

Primary 7 – subtraction to any value

We reinforce with the children that when we are subtracting we always begin by subtracting the UNITS, then the TENS, then the HUNDREDS and then the THOUSANDS.

When we exchange, the new value is always written to the top left of the digit on the top line of the sum.

The sum is laid out as shown on the left.

Subtraction of Decimal Numbers

 $\begin{array}{r}
23.391 - 11.7 \\
2^{2}3.^{1}391 \\
-11.700 \\
\hline
11.691
\end{array}$

When subtracting decimal numbers all place value columns, including those beyond the decimal point, should be correctly aligned. Empty decimal places can be filled with a zero to show the place value of each column.

Language of Subtraction used in Primary Six and Seven

Minus Subtracting Take away Less than

Fewer

Decrease

Difference

Difference between

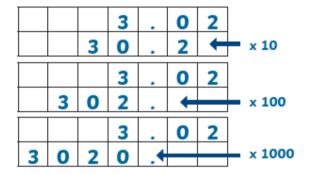
Primary 6 / Primary 7

Multiplication

Approaches and strategies used for teaching Multiplication.

reproductes and strategies used for teaching maniphedicini					
<u>Vertical Multiplication</u>					
537 x 8 5 3 7 X 2 5 8 4 2 9 6	Initially multiplication of HTU by a single digit up to 999 by 9 Extend multiplication of any value by a single digit (up to 9) Remember to add in any values that have been carried over When we carry, it is carried to the bottom line of the sum. An example sum is laid out as shown on the left.				
<u>Long Multiplication</u>					
53 x 14 5 3 X 1 ₁ 4 2 1 2 + 5 3 0 7 4 2	Introduce long multiplication multiplying a 2-digit number (up to 99) by a 2-digit number (up to 19) 1. Multiply 3 x 4 (= 12) 2. Multiply 5 x 4 (= 20) and add carried 1 (20+1=21) 3. Fill in placeholder zero 4. Multiply 53 x 1 (=53) 5. Add two values				

(212 + 530 = 742)


75 x 34

$$\begin{array}{r}
 7_{1}5 \\
 X 3_{2}4 \\
 \hline
 3 0 0 \\
 + 2 2 5 0 \\
 \hline
 2 5 5 0
\end{array}$$

- 1. 1 Multiply 5 x 4 (=20)
- 2. 2 Multiply 7 x 4 (=28) and add carried 2 (28 + 2 = 30)
- 3. Fill in placeholder zero
- 4. Multiply 5 x 3 (= 15)
- 5. Multiply 7 x 3 (= 21) and add carried 1 (21 + 1 = 22)
- 6. Add two values (300 + 2250 = 2550)

Multiplying Decimals By 10, 100 and 1000

Each digit moves the necessary number of places to the left because multiplying by 10, 100 or 1000 increases the number.

When multiplying decimal values by 10, each digit moves one place to the left. When multiplying decimal values by 100, each digit moves two places to the left. When multiplying decimal values by 1000, each digit moves three places to the left.

The decimal point never

moves.

Language of Multiplication used in Primary Six and Seven

Multiply
Multiplication
Product
Opposite of Division
Inverse of Division
BODMAS rule
Multiple of

Primary 6/7

Division

Approaches and strategies used for teaching division.

Bus Stop Division

Division by a single initially within 999

- without remainders
- with remainders Extend division by a single digit to any value
- without remainders
- with remainders

Division by Factors

The factors of 27 are 3 and $9 (3 \times 9 = 27)$

Divide 1566 by 3 $(1566 \div 3 = 522)$

Divide the answer by the other factor, 9. $(522 \div 9)$ = 58)

Division by 10, 100 and 1000

3 0 2 0 . 0

Remember:

1.Keep the digits together. Don't let any 0's jump in! 34 ÷ 10 = 3×.4

2. Round to check: $340 \div 100 = 3.4$ use 300 ÷ 100 = 3

3. Use the inverse to check: $3.4 \times 1000 = 3400$

When dividing a number by 10, 100 or 1,000 the value of each digit is divided sometimes giving a decimal answer.

When dividing values by a) 10 - each digit moves one place to the left.

- b) 100 each digit moves two places to the left.
- c) 1000 each digit moves three places to the left.

The decimal point never moves.

Language of Division used in Primary Six and Seven

Division

Divide

Share

Split

Equal sets

Equal sharing

Remainder

Divisible by

Opposite of multiplication

Inverse of multiplication

BODMAS rule

Quotient

40	