Saint Eithne’s Primary School

Numeracy Calculations Handbook Guidance for Staff and Parents

Compiled by Mrs P. Miller
Numeracy Coordinator

October 2020

Contents Page

Page 3	Overview of the Numeracy Calculations Handbook
Page 4	Section A: Breakdown of Addition and Subtraction Ranges

Pages 5-9 Primary One: The Four Operations

Pages 10-15 Primary Two: The Four Operations

Pages 16-21 Primary Three: The Four Operations

Pages 22-28 Primary Four: The Four Operations

Pages 29-33 Primary Five: The Four Operations

Pages 34-39 Primary Six/Seven: The Four Operations

Overview and Purpose of
 Numeracy Calculations Handbook

This handbook is to be used to ensure the consistent approach to the teaching of the four operations in numeracy. It will outline clearly the teaching strategies and methods used within each Key Stage and year group.

It can be used to help inform numeracy planning and provides an insight into the teaching that has occurred in prior year groups.

This handbook can also be used by parents in the support of teaching the four operations and as an aid to providing help and support to their children with their homework.

Section A

Breakdown of Addition and Subtraction

This table outlines the level of Place Value/Addition and Subtraction that is taught within each year group.

Year Group	Level/Content Primary 1 (initially)
Primary 2	Working to 20 (initially)
Primary 3	Working to 99 (extend to 999)
Primary 4	Working to 999
Primary 5	Working to 9, 999
Primary 6	Working to 99, 999 (initially)
Primary 7	Working to 99, 999 (initially)

Section B

Multiplication Tables

This table outlines the level of multiplication that is taught within each year group.

Year Group	Level/Content
Primary 1	Counting in 2 s
Primary 2 Counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s	
Primary 3	2,5 and 10 multiplication tables
Primary 4	$2,3,4,5$ and 10 multiplication tables
Primary 5	$2,3,4,5,6,7,8,9,10,11$ and 12 multiplication tables
Primary 6	$2,3,4,5,6,7,8,9,10,11$ and 12 multiplication tables
Primary 7	$2,3,4,5,6,7,8,9,10,11$ and 12 multiplication tables

Primary 1

Addition

Approaches and strategies used for teaching addition

Primary 1

Subtraction

Approaches and strategies used for teaching subtraction

Practical Subtraction	
$\bigcirc \bigcirc \bigcirc$	Practical and oral work subtracting within 5 initially. Move on to subtracting within 10 in Term 3
Number Sentence	
	Initially children complete the number sentence by placing digit cards in each box before progressing to writing the numbers themselves. Practical materials also used by children at this stage.
Use of a Number Line	
	The children practise counting backwards within 10 using a number line. Number sentences continue to be written horizontally.
Use of 100 Square	
	Children in Primary 1 have been introduced to the hundred square and practise counting backwards from 10.

Take away
Subtract
Minus
Leaves
How many left?
One less
Two less

Primary 1

Multiplication

Approaches and strategies used for teaching multiplication.

Pictorial Multiplication	
12345678910	Oral work counting in 2 s within 10
Practical Multiplication	
$\bigcirc 0$ \bigcirc \bigcirc	Making sets of 2
Use of a Number Line	
Counting On Number Lines Number Line 0-20	Counting in $2 s$ up to 20 using a number line
Use of 100 Square	
	Children in Primary 1 are introduced to the hundred square and practise counting to 100 in steps of 2,5 and 10.
Language of Multiplication used in Primary One	
Makes sets of 2 Make lots of 2 Makes groups of 2 Count in 2 s , 5 s , 10 s	

Primary 1

Division

Approaches and strategies used for teaching division.

Practical Division			
Language of Division used in Primary One			
Share between 2			
Sets of 2			
Groups of 2			
Equal			

Primary 2

Addition

Approaches and strategies used for teaching addition
Pictorial Addition
Combining sets to 10/15

Use of 100 Square

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Use of 100 square to

 practise counting in 2 s to 205s to 100
10 s to 100

Language of Addition used in Primary Two
Add
Plus
Altogether
Makes
Equal
More than
Total
How many?

Primary 2

Subtraction

Approaches and strategies used for teaching subtraction

Use of a Number Line	
Counting On Number Lines Number Line 0-20	Children practise counting backwards from different starting points. Use number line to link counting back to subtraction. Move to the left when counting backwards.
Practical Subtraction	
	Using a variety of practical equipment to practise subtraction within 10 initially. In Term 3, children subtract within 20.
Number Sentence	
$7-3=4$	Children will have had experience of using the subtraction symbol in practical activities. In Term 2b, children will carry out shopping activities and games requiring giving out change from 15p/20p.

Use of 100 Square

Primary 2

Multiplication

Approaches and strategies used for teaching multiplication.

Pictorial Multiplication	
$\begin{array}{ccccccccccc} 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\ 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\ 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \end{array}$	Counting in sets of 2,5 and 10
Use of 100 Square	
	Use of 100 square to practise counting in 2 s to 20 $5 s$ to 100 10s to 100
Practical Multiplication	
	Making sets of 2, 5 and 10
Language of Multiplication used in Primary Two	
Makes sets of 2 Make lots of 2 Makes groups of 2 Count in 2 s , 5 s , 10 s	

Primary 2

Division

Approaches and strategies used for teaching division.
Stactical Division

Primary 3

Addition

Approaches and strategies used for teaching addition

Use of 100 Square

- Counting in 2 s (odd/even)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Counting in 10 s from any starting point eg 13, 23, 33
- Adding on the 100 square within a decade
- Adding on the 100 square bridging a ten. Introducing the concept of adding by sweeping from right to left from 10 across to 11, 20 across to 21 , 30 across to 31 etc

Addition Patterns

	$\begin{gathered} 1+3=4 \\ 11+\square=14 \\ 21+3=\square \end{gathered}$	Children explore extended addition patterns a) practically using Tens and Units apparatus b) written - horizontally
Horizontal/Vertical Addition of 3 Numbers		
$7+1+3=11$	$\begin{array}{r} 7 \\ 1 \\ +3 \\ \hline 11 \end{array}$	Children add together 3 single digit numbers. They are encouraged to look for values that can be paired eg 2 numbers that add to 10, doubles.

Subtraction

Approaches and strategies used for teaching subtraction.

Use of 100 Square

- Counting back in $1 \mathrm{~s}, 2 \mathrm{~s}$, $5 \mathrm{~s}, 10 \mathrm{~s}$
- Counting back in 10 s from any starting point eg 63, 53, 43, 33
- Subtracting on the 100 square bridging a ten.
- Introducing the concept of subtracting by sweeping from left up to right from;

21 across and up to 20
31 across and up to 30
41 across and up to 40.

- Subtracting 10 from any given number.
- Subtract 11, 21
- Subtract 9, 19

Subtraction Patterns

$$
\begin{aligned}
6-3 & =3 \\
16-3 & =13 \\
26-3 & =23 \quad \text { etc }
\end{aligned}
$$

Children explore subtraction patterns

Horizontal Subtraction

$$
57-6=51
$$

Vertical Subtraction	
$\begin{array}{r} T U \\ 54 \\ -23 \\ \hline 31 \\ \hline £ 7.34 \\ -£ 2.12 \\ \hline £ 5.22 \end{array}$	Vertical subtraction without exchange. We reinforce with the children that when we are subtracting we always begin by subtracting the UNITS and then the TENS. Extend to subtraction of HTU - without exchanging. Include money amounts in subtraction.
Language of Subtraction used in Primary Three	
Minus Subtracting Take away Less than Fewer Decrease Difference Difference between	

Primary 3

Multiplication

Approaches and strategies used for teaching multiplication.

Primary 3

Division

Approaches and strategies used for teaching division.

The concept of division is taught through the practical processes of grouping and sharing.

Grouping

Sharing

Language of Division used in Primary Three

Share between 2, 5, 10
Sets of 2,5, 10
Equal sets
Equal groups

Primary 4

Addition

Approaches and strategies used for teaching addition

Use of the 100 Square

- Counting forward 10/

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Use expanded notation to add two 2-digit numbers $23+45=20+40+3+5$

Vertical addition of TU without Regrouping

$T U$
54
+23
77

Revision of Vertical addition without regrouping (within 100) We reinforce with the children that when we are adding we always begin by adding the UNITS and then the TENS.

Vertical Addition Of TU with Regrouping

Vertical Addition Of HTU with Regrouping

a) One regrouping

HTU	HTU
354	481
+4388	
792	+293

b) Two regroupings

H T U
375
$+43_{1} 9$
$\overline{814}$

Remind the children that when we are adding we always begin by adding the UNITS and then the TENS and then the HUNDREDS. When we regroup, it is carried to the right of the bottom TENS or HUNDREDS digit.
Example sums are laid out as shown on the left.
Addition to 999.

Add
Plus
Altogether
Makes
Equal
More than
Total
How many?
Increase
Greater than

Primary 4

Subtraction

Approaches and strategies used for teaching subtraction

Use of the 100 square		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	- Subtract 10 from any given number. - Subtract a multiple of 10 from any given number - Subtract a 2-digit number from a 2-digit number 46-24 First subtract 2 tens Then count back 4 units
Vertical subtraction of TU without Exchanging		
	$\begin{array}{r} \text { TU } \\ 54 \\ -\quad 23 \\ \hline 31 \\ \hline \end{array}$	Revision of Vertical subtraction without regrouping (within 100) We reinforce with the children that when we are subtracting we always begin by subtracting the UNITS and then the TENS.
Vertical Subtraction Of TU with Exchanging (within 100)		
$\begin{array}{r} T U \\ 4 K^{13} \\ -\quad 29 \\ \hline 24 \end{array}$	$\begin{array}{r} T U \\ 4{ }^{4} 10 \\ -34 \\ \hline 16 \end{array}$	Reminder - always begin by subtracting the UNITS and then the TENS. The sum is set out as shown on the left. The "exchanged" value is always written to the top left of the digit on the top line of the sum.
Vertical Subtraction Of HTU without Exchanging		
	$\begin{array}{r} \mathrm{HTU} \\ 784 \\ -261 \\ \hline 523 \\ \hline \end{array}$	We reinforce with the children that when we are subtracting we always begin by subtracting the UNITS, then the TENS and then the HUNDREDS. (up to 999)

Vertical Subtraction Of HTU with Exchanging

a) One exchange

$H T U$	$H T U$
$3{ }^{4}$ S $^{1} 4$	48^{10}
-138	
216	-243
237	

b) Two exchanges

H T U
$78^{15} 6^{10} 0$

- 482

378

Language of Subtraction used in Primary Four
Minus
Subtracting
Take away
Less than
Fewer
Decrease
Difference
Difference between

Primary 4

Multiplication

Approaches and strategies used for teaching multiplication.

Primary 4

Division

Approaches and strategies used for teaching division.

The concept of division is revisited through the practical processes of grouping and sharing.
In Primary 4, the division
symbol (\div is introduced
15 divided by $3=5$
$15 \div 3=5$

The Bus Stop Method		
$\begin{aligned} & 2 \longdiv { 8 4 } \\ & 2 \\ & 2 \longdiv { 8 4 } \\ & 2 \\ & 2 \\ & 24 \\ & \hline 84 \end{aligned}$	Do the 8 first, $8 \div 2=4$ Then do the $4,4 \div 2=2$	The bus top method for formal division is introduced in Primary 4. Remainders are also introduced in Primary 4
Language of Division used in Primary Four		
Division Divide Share Equal sets Equal sharing Repeated subtraction Remainder		

Primary 5

Addition

Approaches and strategies used for teaching addition

Vertical addition of THTU without/ with Regrouping

One regrouping

TH H T U
3591
$+2324$
5915
Two regroupings
TH HTU
3598
$+23_{1} 2_{1}$
592

Three regroupings
TH H TU
3897
$+23_{1} 74$
6271

TH HTU
5724
$+2563$
8287
TH HTU
5724
$+2,569$
8293

Language of Addition Used in Primary Five

Add
Plus
Altogether
Makes
Equal
More than
Total
How many?
Increase
Greater than

Primary 5

Subtraction

Approaches and strategies used for teaching subtraction

Vertical Subtraction of THTU with Exchanging

Two exchanges

$$
\begin{aligned}
& \text { Th H T U } \\
& \begin{array}{c}
2 \beta^{1} 5^{3} 44^{1} 0 \\
-1827 \\
\hline 1713
\end{array}
\end{aligned}
$$

Four exchanges
TTHTH H T U
${ }^{4} \boldsymbol{Z}^{14} 5^{13} 4^{12} \not{ }^{12}{ }^{10} 0$
$\begin{array}{r}-28746 \\ \hline 26684 \\ \hline\end{array}$

Remind the children that when we are subtracting we always begin by subtracting the UNITS, then the TENS, then the HUNDREDS and then the THOUSANDS

Example sums are set out as shown on the left.
When we exchange, the new value is always written to the top left of the digit on the top line of the sum.
Subtraction within 9999, initially. Extend beyond 9999.

Language of Subtraction used in Primary Five

Minus
Subtracting
Take away
Less than
Fewer
Decrease
Difference
Difference between

Primary 5

Multiplication

Approaches and strategies used for teaching multiplication.

Multiplication Grids			
			We use these types of multiplication grids to reinforce the process of multiplication and recall of multiplication facts.
Grid Method			
	$\text { x } 7=$ 20 140 140	4 28 $28=168$	1. Draw a grid and write the partitioned numbers across the top. $(20,4)$ 2. Multiply each of the partitioned numbers. ($20 \times 7,4 \times 7$) 3. Add the products $140+28=168$
Column Method			
	$\begin{array}{r} 24 \\ \times \quad 27 \\ \hline 168 \end{array}$		1. Write the numbers above each other. 2. Multiply $4 \times 7=28$ 3. Write down 8 and carry 2. 4. Multiply $2 \times 7=14$ 5. Add carried 2 $14+2=16$
Language of Multiplication used in Primary Five			
		Multiply Multiplication peated addition Product posite of Divis verse of Division	

Primary 5

Division

Approaches and strategies used for teaching division.

Short Division	
2 digit division - no remainder $78 \div 6=\underset{1 \times 6=6}{7^{18} 8}$ 1 remainder left over $3 \times 6=18$	Division is taught using the bus stop method, with and without remainders.
3 digit division - no remainder	
3 digit division - with remainder	

Division
Divide
Share
Split
Equal sets
Equal sharing
Repeated subtraction
Remainder
Divisible by
Opposite of multiplication
Inverse of multiplication

Primary 6 / Primary 7

Addition

Approaches and strategies used for teaching addition.

Vertical addition with Regrouping

Vertical addition with Regrouping	
$\begin{array}{r} \mathrm{TTH} \mathrm{TH} \mathrm{H} \text { U } \\ 57897 \\ +\quad 233_{1} 46 \\ \hline 816643 \end{array}$	Initially revise addition to 9999 Extend addition beyond 9999 with regrouping Primary 7 - addition to any value We reinforce with the children that when we are adding we always begin by adding the UNITS, then the TENS, then the HUNDREDS and then the THOUSANDS. When we carry, it is carried to the right of the number on the bottom line of the sum. An example sum is laid out as shown on the left.
Addition of Decimal Numbers	
$\begin{array}{r} 23.361+9.08+59.77+1.3 \\ 23.361 \\ 9.080 \\ 59.770 \\ +\quad \begin{array}{l} 1.320 \\ \hline 93.511 \end{array} \end{array}$	In Primary 6 and 7 children add several decimal numbers of increasing complexity. It is essential that decimal points are aligned vertically when adding. Empty decimal places can be filled with a zero to show the value in each column.
Language of Addition Used in Primary Six and Seven	

Primary 6 / Primary 7

Subtraction

Approaches and strategies used for teaching subtraction.

Vertical Subtraction with Exchanging

Vertical Subtraction with Exchanging	
$\begin{array}{r} \text { TTH TH H T U } \\ \begin{array}{r} 45^{11} 2^{13} \boldsymbol{A}^{10} \mathfrak{\chi}^{1} 5 \\ -\quad 23746 \\ \hline 286699 \end{array} \end{array}$	Initially revise subtraction to 9999 before extending subtraction beyond 9999 with exchanging Primary 7 - subtraction to any value We reinforce with the children that when we are subtracting we always begin by subtracting the UNITS, then the TENS, then the HUNDREDS and then the THOUSANDS. When we exchange, the new value is always written to the top left of the digit on the top line of the sum. The sum is laid out as shown on the left.
Subtraction of Decimal Numbers	
$\begin{array}{r} 23.391-11.7 \\ 2^{2} 3 .{ }^{1} 391 \\ -11.700 \\ \hline 11.691 \end{array}$	When subtracting decimal numbers all place value columns, including those beyond the decimal point, should be correctly aligned. Empty decimal places can be filled with a zero to show the place value of each column.
Language of Subtraction used in Primary Six and Seven	

Primary 6 / Primary 7

Multiplication

Approaches and strategies used for teaching Multiplication.

Vertical Multiplication	
$\begin{array}{r} 537 \times 8 \quad 7 \\ \times \quad 58 \\ \hline 4296 \end{array}$	Initially multiplication of HTU by a single digit up to 999 by 9 Extend multiplication of any value by a single digit (up to 9) Remember to add in any values that have been carried over When we carry, it is carried to the bottom line of the sum. An example sum is laid out as shown on the left.
Long Multiplication	
$\begin{array}{r} 53 \times 143 \\ \times 114 \\ \hline 212 \\ +530 \\ \hline 742 \end{array}$	Introduce long multiplication multiplying a 2-digit number (up to 99) by a 2-digit number (up to 19) 1. Multiply $3 \times 4(=12)$ 2. Multiply $5 \times 4(=20)$ and add carried 1 ($20+1=21$) 3. Fill in placeholder zero 4. Multiply 53×1 (=53) 5. Add two values $(212+530=742)$

75×34

715
$\times 324$
300
$+\quad 2250$
2550

1. 1 Multiply 5×4 (=20)
2. 2 Multiply 7×4 ($=28$) and add carried 2 ($28+2=30$)
3. Fill in placeholder zero
4. Multiply $5 \times 3(=15)$
5. Multiply $7 \times 3(=21)$ and add carried 1

$$
(21+1=22)
$$

6. Add two values $(300+2250=2550)$

Multiplying Decimals By 10, 100 and 1000

When multiplying decimal values by 10, each digit moves one place to the left. When multiplying decimal values by 100, each digit moves two places to the left. When multiplying decimal values by 1000, each digit moves three places to the left.
The decimal point never moves.

Language of Multiplication used in Primary Six and Seven

Multiply Multiplication

Product
Opposite of Division Inverse of Division

BODMAS rule Multiple of

Primary 6/7

Division

Approaches and strategies used for teaching division.

Bus Stop Division

Bus Stop Division	
	Division by a single initially within 999 - without remainders - with remainders Extend division by a single digit to any value - without remainders - with remainders
Division by Factors	
$\begin{array}{r} 1566 \div 27= \\ 3 \begin{array}{\|c} 1566 \\ 9 \\ 558 \\ 5^{5} 2^{7} 2 \end{array} \end{array}$	The factors of 27 are 3 and $9(3 \times 9=27)$ Divide 1566 by 3 $(1566 \div 3=522)$ Divide the answer by the other factor, 9 . ($522 \div 9$ = 58)

Division by 10,100 and 1000

$$
\begin{aligned}
& 3020 \div 10=302 \\
& 3020 \div 100=30.2 \\
& 3020 \div 1000=3.02
\end{aligned}
$$

Remember:

1. Keep the digits together. Don't let any O's jump in!
$34 \div 10=3$ 睘. 4
2. Round to check:
$340 \div 100=3.4$
use $300 \div 100=3$

3. Use the inverse to check: $3.4 \times 1000=3400$

When dividing a number by 10, 100 or 1,000 the value of each digit is divided sometimes giving a decimal answer.

When dividing values by
a) 10 - each digit moves one place to the left.
b) 100 - each digit moves two places to the left.
c) 1000- each digit moves three places to the left.

The decimal point never moves.

Language of Division used in Primary Six and Seven

Division
Divide
Share
Split
Equal sets
Equal sharing
Remainder
Divisible by
Opposite of multiplication
Inverse of multiplication
BODMAS rule
Quotient

